Graph
Graph
Graph
Bases: object
Source code in tgx/classes/graph.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
|
__init__(dataset=None, fname=None, edgelist=None)
Create a Graph object with specific characteristics Args: dataset: a dataset object edgelist: a dictionary of temporal edges in the form of {t: {(u, v), freq}}
Source code in tgx/classes/graph.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
|
check_time_gap()
Check whether the edgelist timestamps have gaps or not (increments bigger than 1) Returns: time_gap: a boolean indicating whether there is a time gap or not
Source code in tgx/classes/graph.py
258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
discretize(time_scale, store_unix=True, freq_weight=False)
discretize the graph object based on the given time interval Args: time_scale: time interval to discretize the graph store_unix: whether to store converted unix time in a list freq_weight: whether to weight the edges by frequency in the new graph object
Source code in tgx/classes/graph.py
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
|
export_full_data()
convert self.data inot a dictionary of numpy arrays similar to TGB LinkPropPredDataset
Source code in tgx/classes/graph.py
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
|
map_nid()
remap all node ids in the dataset to start from 0 and based on node order of appearance. Also updates self.data Output: id_map: a dictionary mapping original node id to new node id
Source code in tgx/classes/graph.py
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
|
max_nid()
find the largest node ID in the dataset
Source code in tgx/classes/graph.py
163 164 165 166 167 168 169 170 171 172 173 174 175 |
|
min_nid()
find the smallest node ID in the dataset
Source code in tgx/classes/graph.py
177 178 179 180 181 182 183 184 185 186 187 188 189 |
|
nodes_list()
Return a list of nodes present in an edgelist
Source code in tgx/classes/graph.py
243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
|
number_of_edges()
Calculate total number of nodes present in an edgelist
Source code in tgx/classes/graph.py
123 124 125 126 127 128 129 130 131 132 |
|
save2csv(fname='output')
Save the graph object in an edgelist format to a csv file Args: fname: name of the csv file to save the graph, no csv suffix needed
Source code in tgx/classes/graph.py
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
|
shift_time_to_zero()
shift all edges in the dataset to start with timestamp 0
Source code in tgx/classes/graph.py
77 78 79 80 81 82 83 84 85 |
|
total_nodes()
Calculate total number of unique nodes present in an edgelist
Source code in tgx/classes/graph.py
148 149 150 151 152 153 154 155 156 157 158 159 160 |
|
unique_edges()
Calculate the number of unique edges Parameters: graph_edgelist: Dictionary containing graph data
Source code in tgx/classes/graph.py
134 135 136 137 138 139 140 141 142 143 144 145 |
|