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Abstract

LLM-based social simulations—in which many
language model agents interact over multiple
turns—are rapidly proliferating across policy anal-
ysis, epidemiology, and computational social sci-
ence. Yet the field lacks consensus on how to
validate these simulations, with evaluation meth-
ods that are few, underdeveloped, fragmented, and
rarely shared across disciplines. We argue this cre-
ates a serious risk: premature deployment of un-
validated simulators in high-stakes domains. Our
position is that the field must pivot from expan-
sion to consolidation, prioritizing methodological
standardization—shared benchmarks, open data,
and reproducible evaluation protocols grounded
in social science and complex systems research.
We outline a concrete research program organized
around specific learning problems/benchmarks,
providing a path toward answering the fundamen-
tal question: when are LLM social simulations
useful modelling objects?

1. Introduction

The advent of Large Language Models (LLMs) has the po-
tential to constitute an important step forward in the simula-
tion of human social systems. They allow modelling human
behaviour at a degree of social complexity and grounding
that greatly exceeds existing modelling approaches, cover-
ing phenomena central to culture and society. A motivation
to pursue such approaches comes from viewing LLMs as
cultural technologies, providing access to large amounts of
cultural information (Farrell et al., 2025). For such phe-
nomena, they would supplant both traditional agent-based
modeling, in which agent models with minimal complexity
limit model expressivity, and deep reinforcement learning
agent simulations, in which a blank-slate specification bur-

"Mila - Quebec Artificial Intelligence Institute, Montréal,
Canada *McGill University, Montréal, Canada *Université de
Montréal, Montréal, Canada. Correspondence to: Maximilian
Puelma Touzel <puelmatm@mila.quebec>.

Preprint. February 3, 2026.

den limits model grounding to real social phenomena (Lake
etal., 2017).

This technology promises to produce world models (Ding
et al., 2025) (such as social world models), useful for under-
standing mechanisms, testing counter-factuals, and making
predictions. Researchers from many disciplines are now de-
veloping LLM-based simulation approaches that build and
run social world models for a variety of applications (e.g.
generic (Zhou et al., 2025a; Ren et al., 2026), social media
(Ng & Carley, 2025; Puelma Touzel et al., 2025), public
health (Shi et al., 2026; Chopra et al., 2024; Kozlowski &
Evans, 2025)). The seminal paper in the field explicitly
proposed policy applications (Park et al., 2022) and policy
analysts are starting to pay attention (e.g. (Orsi, 2024)).
However, current research activity is scattered broadly over
a range of disciplines, bringing heterogeneous goals and
norms around quality and rigor.

There is a long tradition in social science of developing pen-
etrating evaluations designed to interrogate complex social
systems through the best, but still limited measurement of
survey and observation. This toolkit is being brought to bear
on LLM-based social simulations (Wallach et al., 2025; Cui
et al., 2025).

In parallel and with access to unprecedented compute re-
sources, software development technologies are being used
to build general simulators with rich feature sets (e.g. (Piao
et al., 2025a; Yang et al., 2024)). Many such products are
advertised as general purpose, but are evaluated on a rela-
tively narrow set of applications, leaving broader evaluation
to domain-specific adopters.

A natural consequence of this discordant development is
slow convergence towards consensus of what these models
are capable of. For example, seemingly conflicting results
regarding many core questions like the ability of LLMs to
reproduce survey responses and the ability of groups of
agents to produce genuine emergent behaviour. A likely
cause in many of these cases, is divergent methodology
and heterogeneous problem framing. Moreover, insufficient
validation can lead to invalid conclusions about emergent
behaviour (Barrie & Tornberg, 2025).

Evaluation-centric and feature-centric approaches are both
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necessary, but neither alone is sufficient. We argue that
assessing the real utility of LLM-based social simulations
requires their careful integration within a unified method-
ological framework. The natural vehicle for this integration
is machine learning methodology: well-defined learning
problems supported by shared data, open code, and stan-
dardized benchmarks.

Position: Validation of LLM-based social simula-
tions has not kept pace with their proliferation.
The field must pivot from expansion to consolida-
tion—adopting shared benchmarks, open data,
and reproducible evaluation grounded in social
science—before these tools can responsibly in-
form high-stakes decisions.

Summarizing our paper’s contributions, we:

1. Provide a modelling language through which to ground
discussions around the evaluation of a class of models
we term Silicon Societies.

2. Express a list of evaluation fallacies made in the liter-
ature on silicon societies and phrase them in our lan-
guage.

3. Outline a frictionless reproducibility approach that our
position advocates for and provide an example simula-
tor project to illustrate best practise.

4. Layout a set of learning problems inspired by a set of
target properties and evaluations designed to measure
them (stability, polarization, narratives)

5. Engage with alternative views and sketch a call-to-
action about how researchers from different disciplines
can participate in our proposed structured research com-
munity.

2. Silicon Societies

While LLMs are relatively recent, the research on simulating
social systems with LLMs and on multi-agent Al systems is
already vast. The position we argue here regards modeling
social phenomena, which helps focus the scope onto works
that aim toward Silicon Societies. We define Silicon Soci-
eties as simulations of human social interactions with a large
amount of implicit (i.e. latent) cultural context selectively
made explicit using LLMs. Works on task-oriented multi Al-
agent systems (coding agents, web/computer agents, etc.),
which typically do not explicitly model the larger human en-
vironment into which the agents will eventually be deployed
and do not seek to model human behavior, are therefore out
of scope (though some of their evaluation methods could
still be of relevance, e.g. Vijayvargiya et al. (2025)). Phe-
nomena in human society are typically strongly influenced
by social reasoning about implicit and explicit social norms,
or other aspects of social intelligence that emerge among

groups of agents. Emergent social intelligence then serves
as a central topic in this scope and focuses model design on
the simulationist design objective (Vezhnevets et al., 2025)
in which the goal is empirical fidelity over a specified subset
of social phenomena. While the aim is to match behaviours
with the set of relevant phenomena, replicating microscopic
detail is not necessary a priori as the details required depend
on the phenomena of interest.

In pursuit of this simulationist objective, machine-readable
(i.e. digital) environments are especially relevant as they
offer large amounts of human interaction data to ground
simulator behavior. Social media is a prime example of
such an environment.

To reason clearly about the validity, limitations, and eval-
uation of silicon societies, we next introduce a minimal
formal abstraction that captures what these systems have
in common. In contrast to more general formulations (Fer-
rarotti et al., 2026), ours has the specificity to be able to
state precisely a variety of important validation problems.

2.1. Formal Abstraction

In a high-level description, a silicon society induces a prob-
ability distribution over system trajectories. A trajectory
records the evolution of the environment and agent interac-
tions over time, including what agents observe and how they
act.

Formally, let

T = (50’ {Oéaz(i)?af)}:l:h‘sh . '75T) )

denote a trajectory of length 7', where s; represents the envi-
ronment state at time ¢, and o} and a; denote the observation
and action of agent :.

A silcon society defines a distribution,
p(T|X,0),

where X" denotes the simulation specification (e.g., prompt
templates, orchestration logic, environment rules), and ®
denotes model parameters (e.g., LLM weights, temperatures,
and persona/environment initializations).

This abstraction is intentionally minimal. It hides architec-
tural details and treats the simulator as a generative process
over trajectories. Our critique applies to any system that
induces such a distribution, regardless of whether agents are
implemented via prompting, fine-tuning, tool use, explicit
planning modules, or hybrid approaches.

Evaluations of silicon societies are then functions of trajec-
tories,

L(7),

which may assess properties such as behavioral realism, sta-
bility over time, coordination strength, or alignment with
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empirical data. Learning or tuning a simulator—whether by
adjusting prompts, model parameters, or environment de-
sign—can be understood as optimizing expected evaluation
outcomes under this distribution.

Many claims made in the literature, including claims about
emergence, coordination, or norm formation, are ultimately
statements about statistical properties or dependencies
within p(7 | X', ©®). Making this objective explicit allows
such claims to be stated precisely and, in principle, tested.

2.2. A Representative Simulator Decomposition

We now describe one common instantiation of the abstract
formulation above, using a machine learning—oriented for-
malism inspired by stochastic games and prior work on
LLM-based agent simulations (e.g., Concordia (Vezhnevets
et al., 2023)). This decomposition is representative rather
than normative; many variants are possible.

A multi-agent simulation consists of n agents interacting
within a shared environment. Each agent is implemented
using a generative model (e.g., an LLM) that samples out-
puts conditioned on inputs and parameters. Given an input
x (such as a prompt with context) and parameters 6, the
model generates

Y Np( | CL’,Q)7

where y can be text, structured data, or an action specifica-
tion.

System Components At time ¢:

* s; —environment state (locations, objects, social con-
text)

* o} — agent 4’s observation of the environment: o} =
O'(s1)

* a! — agent i’s action (speech, movement, posts). To-
gether, these actions form the joint action vector, a;.

* §° — LLM parameters for agent i (model type, weights,
temperature, static+initial persona context)

» Ai(-) — agent i’s action generation function (prompt
structure)

* Ogny — environment parameters (model type, rules,
static+initial environment context)

* T (-) — environment state update function (prompt struc-
ture or rules)

e O = (fgw, 0", ...,0™) —all LLM model parameters

In addition to having implicit internal states (LLM activa-
tions), agent models can have explicit (e.g., natural lan-
guage) internal states:

. zg — agent ¢’s internal state (beliefs, memories, goals,
plans), and

 Zi(.) —agent i’s internal state update function (prompt
structure) .

Dynamics Each timestep involves agent computation fol-
lowing a perception-cognition-action cycle along with envi-
ronment computation providing observations and resolving
action effects:

1. Think: Update internal state based on observation and
prior state

Zi-&-l ~p(-] Zi(oi-i-lvzé)aei) ) (1

where Z(0}, |, 2{) constructs the prompt, e.g. “Given
{interaction} & {retrieved memories/beliefs}, what
would {name} think?”.

2. Act: Generate action based on internal state

ai+1 ~p(-| Ai(2§+1)a9i) ) (2)

where A’(z},,) constructs the prompt, e.g. “Given
{interaction} & {thoughts}, what would {name} do?”.

3. Environment update: An environment simulator is
used to update the world based on all actions

St41 ™~ p(' | T(Staat)79Env) , 3)

where 7T (s, a;) encodes update rules and/or constructs
the prompt for LLM-based updating, e.g. “Given {the
state}, and {names} attempted {actions}, what hap-
pens?”.

Simplified variants may omit explicit internal state and gen-
erate actions directly from observations and history, trading
interpretability for computational efficiency.

Under this decomposition, the simulator induces the trajec-
tory distribution introduced in Section 2.1. Different choices
of prompts, parameters, or environment rules correspond to
different distributions over trajectories and, consequently,
different simulated social dynamics.

The benefit of this abstraction is not technical novelty but
analytical clarity. By making the generative object explicit,
it becomes possible to precisely formulate and evaluate
claims about silicon societies. This perspective also clarifies
what it means to validate, compare, or transfer simulations
across settings—questions that motivate the critiques and
fallacies discussed in the next section.

3. Common Evaluation Pitfalls in Silicon
Societies

LLM-based agent simulations incur orders-of-magnitude
higher computational costs than classical agent-based mod-
els (ABMs) (Samsi et al., 2023). To justify this expense, they
must demonstrate clear advantages in explanatory power or
empirical fidelity. However, recent Silicon Society literature
has been accussed of “failing to adequately evidence op-
erational validity”’(Larooij & Tornberg, 2025). Simulators
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Axis Fallacy Framework Component Core Issue
I Distributional Face Validity p(T | ©®) = p*(1) Low-dimensional plausibility # full trajec-
Validity o tory dl:strlbutlon . o
Aggregate Validation E[¢(7)] vs. p(T) Matching moments # matching distribu-

Cherry-Picking'

p(E | ©) for event £

tions
Post-hoc selection of favorable events

L. Agent—Human Human Proxy Assumption pla]s) I&;ll\glebehawor assumed human without evi-
Correspondence Social Desirability Bias plal| A,0) RLHF skews action distributions
Demographic Representation .A*(d") Prompting demographics # embodied
agents
Untested Design Choices X, 0 Complexity added without ablation or justi-
. . . fication
L. Design Justification Prompt Sensitivity ZL A Semantic invariance violated under rephras-
. ing
Black-Box Gap z{ Internal reasoning unverifiable or uninter-
pretable
Reproducibility Failure (2,A,7,0,...) Key components underspecified or unstable
Homogeneity Var[f(7)] Shared 6 collapses agent diversity
IV. Emergence & Single-Model Dependence’ O fixed Model-specific artifacts mistaken for phe-
Diversity nomena
Circular Evaluation 6 Shared biases inflate evaluation scores
Sycophancy pla| A, 0,r) Researcher intent leaks into behavior
Contamination 7 € Diain Memorization mistaken for generalization
Generic ML Pitfalls' Temporal Validity Teuot € 0 Knowledge-time mismatch
Causal Confounding p(U | s¢,T,0) Unconfoundedness assumptions violated

Table 1. Common evaluation fallacies in Silicon Society simulations, grouped by axis and mapped to components of the simulator
formalism. "Denotes pitfalls not specific to multi-agent LLM simulations, but included for completeness.

are often engineered at impressive scale (e.g, thousands of
agents (Yang et al., 2024)), yet remain difficult to use for
scientific inference because their alignment with real-world
behavior is weakly evidenced or entirely unknown.

Below, we group common pitfalls into four axes that are
particularly salient. More general machine learning issues
(e.g., cherry-picking / contamination) are acknowledged in
Table 1 but not expanded upon, as they are not specific to
this setting.

Axis I: Distributional Validity vs. Face Validity

A pervasive pitfall is equating qualitative plausibility with
distributional correctness. Many works rely on anecdotal
examples, hand-picked trajectories, or compelling visual-
izations as evidence of success, implicitly assuming that
p(T | X,0) =~ p*(7), where p*(7) denotes the (unknown)
real-world process.

In practice, evaluations often focus on low-dimensional
projections (denoted 1), such as individual conversations,
summary statistics, or emergent narratives, rather than tra-
jectory distribution itself. However, agreement on moments
or marginal statistics does not imply agreement on the full
distribution. This leads to aggregate validation fallacies,

where matching E[(7)] is mistaken for matching p().

Of course there are meaningful notions of matching that are
not exact, e.g. distinguishability according to humans or a
family of classifiers (Pagan et al., 2025), but these studies
are rare. Matching issues are exacerbated by vague problem
definitions “simulating society” or “modeling social media”
(Yang et al., 2024; Piao et al., 2025b; Park et al., 2023; Surve
et al., 2023; Vezhnevets et al., 2023; Kaiya et al., 2023; Park
et al., 2022) and by ad-hoc metrics that prevent meaningful
cross-paper comparison. In our formalism, this corresponds
to validating isolated samples of 7, rather than defining and
optimizing a principled evaluation function £(7).

Axis II: Agent-Human Correspondence

Many Silicon Society projects implicitly assume that LLM-
based agents are reasonable proxies for human cognition
and behavior. Yet empirical evidence paints a mixed pic-
ture. Studies comparing LLMs and humans across behavior
(Biick-Kaeffer et al., 2025; Ma, 2025), neural representa-
tions (Holton et al., 2025; Pinier et al., 2025; Fedzechkina
et al., 2025; Aw et al., 2024; Holton et al., 2026; Zhou et al.,
2025b; Kwon et al., 2025), and psychological constructs
(Schroder et al., 2025) yield inconsistent results.
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Despite this, several works proceed as though the correspon-
dence holds by default (Abdurahman et al., 2025; Piao et al.,
2025b; Wang et al., 2023). In our notation, this amounts to
assuming p(a;|$) = Dsome human (@|s) Without direct empiri-
cal support. Attempts to mitigate these gaps, either through
alignment techniques or cognitive modeling, remain limited
in adoption and are themselves contested (Binz et al., 2025;
Chen et al., 2025b; Kong et al., 2026; Schroder et al., 2025;
Namazova et al., 2025).

Without explicitly testing agent—human correspondence on
the phenomena of interest, downstream conclusions about
social dynamics rest on an unstable foundation. This has
strong implications when investigating how LLMs would
behave in the real world (Ren et al., 2026; Orlando et al.,
2025) using simulated environments.

Axis III: Unjustified Simulator Design Choices

A distinct but closely related pitfall concerns simulator de-
sign itself. Silicon societies typically consist of many in-
teracting components (e.g., persona initialization, memory
systems, planning modules, environment, and orchestration
logic), each adding complexity to X and ©.

A common fallacy is to treat this complexity as self-
justifying. Components are often motivated by cognitive
theories or narrative plausibility, but not validated through
controlled experiments. While recent large-scale simulators
demonstrate that ablations are almost always feasible even
in complex computational models (Yang et al., 2024), such
analysis remain rare.

This lack of validation leads to two complementary patholo-
gies. Some works introduce elaborate mechanisms to ad-
dress problems that are assumed, rather than demonstrated,
to exist; others implicitly assume these mechanisms are un-
necessary, again without testing the assumption. In both
cases, X and © are expanded without evidence of improve-
ment under any evaluation function £(7), obscuring causal
attribution and hindering principled comparison across sim-
ulators.

Concrete examples illustrate this issue. Vezhnevets et al.
(2023) and Wang et al. (2023) propose cognitively inspired
agent frameworks, with Vezhnevets et al. (2023) ground-
ing design choices in cognitive psychology. While theo-
retically motivated, such justification is insufficient absent
evidence that these components improve task-relevant or so-
cietally meaningful metrics. Conversely, Yang et al. (2024)
adopts a minimal, memory-based LLM agent design with-
out ablation-based justification. To our knowledge, whether
incorporating human-inspired cognitive components into
LLM agents yields measurable improvements in simulation
quality remains an open empirical question.

Axis I'V: Emergence, Coupling, and Diversity

A defining motivation for Silicon Societies is the study
of emergent social phenomena. However, many simula-
tions inadvertently suppress emergence through architec-
tural choices that induce excessive homogeneity. Shared
model weights, similar prompts, and strong RLHF priors
reduce variance across agents (Wu et al., 2025; Jiang et al.,
2025), leading to collective behavior that reflects model bias
rather than interaction-driven dynamics.

In formal terms, emergence requires violations of condi-
tional independence: p(a; | s;) # [, p(a; | s¢). Yet
few works test this explicitly. While techniques to increase
diversity exist (Nguyen et al., 2025), and its importance
has been argued (Robertson et al., 2024), empirical demon-
strations linking diversity to improved simulation fidelity
remain scarce and have been contested (Barrie & Tornberg,
2025).

Towards proper validation

Recent work has begun to argue that persona simulation
itself requires a scientific methodology (Li et al., 2025a).
While these efforts focus primarily on individual agents, in-
troducing environments and multi-agent interaction induces
additional complexities and emergent effects (Orlando et al.,
2025; Curvo et al., 2025; Schroeder et al., 2026) that de-
mand additional, distinct validation strategies (Song et al.,
2025).

Existing surveys and methodological critiques largely agree
that current practices are insufficient (Larooij & Tornberg,
2025), and recent proposals offer some practical guardrails
(Madden, 2025). What remains lacking is adoption and
iterative improvement. Establishing shared standards for
specifying simulators, justifying design choices, and evaluat-
ing trajectory-level behavior is essential if Silicon Societies
are to mature into a reliable scientific tool rather than an
exercise in plausible storytelling.

4. The solution is frictionless reproducibility

Machine learning has exhibited unprecedented growth com-
pared with other disciplines. What explains this speed?
Platt asked a similar question of molecular biology fifty
years ago and pointed to rigorous hypothesis-based test-
ing (Platt, 1964). But this “strong inference” approach is
a weaker methodology for complex systems—particularly
social ones—where causes cannot typically be isolated to
individual components (Anderson, 1972). Donoho offers
a more compelling answer for machine learning’s rapid
progress: “frictionless reproducibility,” an interconnected
set of research practices and incentives that make methodol-
ogy explicit and efficiently leverage community consensus
mechanisms (Donoho, 2023; Recht, 2024). In this section,
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we contribute elements of this practise for the case of silicon
society research.

4.1. Learning problems

Agent models Agent models are a primary target of ma-
chine learning. Here we list some non-mutually exclusive
agent training paradigms:

1. Model Training: parameters can be fine-tuned from a
base model " = Oy, + A&, using techniques such
as Supervised Fine Tuning (SFT) or Reinforcement
Learning (RL).

2. Model Steering: steering vectors Az’ can be used to
bias model activations z?, controlling the value of the
output logits of the model. This is used to structure the
internal model representation (Chen et al., 2025a).

3. Prompt engineering: the structure of prompt functions
can be trained, e.g., by

* structure learning a component network (z now
being a vector of natural language statements and
Z now updating all components with conditional
dependence given by a component graph)

* including data directly in the prompt, e.g. {aé— jD:1
for D In-Context Learning (ICL) samples.

4. Persona Learning: Creating realistic agents may re-
quire grounding on real-world data. Personas can be
condensed from existing human data and provided to
the model via the above methods.

4.2. Core Learning Objectives

We now describe several learning problems that recur across
silicon societies, ordered from most concrete to most struc-
tural.

Next-Action Prediction The most common and opera-
tionally convenient learning problem is next-action predic-
tion. Given the environment state and interaction history,
the agent predicts its next action:

‘CNAP = - 1ng(a‘t+1|st7 Aty vy 817041)

This framing collapses “thinking” and “acting” into a single
observable step, aligning well with real-world datasets in
which only actions and environment updates are logged. So-
cial media platforms are a canonical example: users observe
a post and may reply, react, repost, or ignore.

Evaluation. Metrics can be defined at multiple granularities:

1. Individual level: action classification (e.g., F1-score),
semantic similarity of generated content (cosine simi-
larity of embeddings, Jaccard similarity over high-IDF
terms), or divergence measures (e.g., Jensen—Shannon).

2. Population level: distributional alignment using ag-
gregated statistics, kernel density estimates, or Monte

Carlo rollouts compared against historical data (e.g.,
KL or JS divergence).

Projects such as BluePrint (Biick-Kaeffer et al., 2025) instan-
tiate this paradigm explicitly, emphasizing population-level
fidelity rather than per-agent optimality. Matching here
should cover both the content and action type (Gatta et al.,
2026).

While next-action prediction is easy to train and evaluate, it
is agnostic to internal reasoning structure and offers limited
guarantees about long-horizon dynamics.

Component Structure Learning Beyond action predic-
tion, some systems aim to learn or impose structure over
agent internal state z!. We distinguish two broad ap-
proaches:

1. Explicit structure learning, where internal state is rep-
resented in natural language or symbolic components
(e.g., beliefs, goals, memories), possibly with learned
dependency graphs and update rules.

2. Implicit structure learning, where internal structure is
encoded in parameters (fine-tuned weights, steering
vectors) without interpretable state variables.

These approaches correspond to different inductive biases:

1. bottom-up emergence versus top-down role or persona
inference,

2. static versus dynamically updated internal state,

3. interpretable but brittle representations versus opaque
but flexible ones.

Objectives in this regime are often indirect, such as narrative
alignment, behavioral consistency, or constraint satisfaction,
rather than likelihood maximization.

Environment Initialization and Orchestration Learning
problems also arise at the level of the environment:

1. Imitialization: choosing initial states sy (e.g., network
structure, topic distribution, agent personas) that repro-
duce realistic downstream behavior.

2. Interaction orchestration: determining whether inter-
actions are narration-driven, dialogue-driven, or event-
driven, and how information propagates across agents.

Although these components are often treated as fixed design
choices, they implicitly define strong priors over trajecto-
ries and can dominate downstream outcomes. One such
design choice is whether agents update simultaneously or
sequentially and in what order.

4.3. Stability and Long-Horizon Behavior

Silicon societies differ most from persona research (center-
ing around one-shot settings, such as survey responses) in



Submission and Formatting Instructions for ICML 2026

that they admit interaction dynamics among agents. This
temporally-extended simulation setting raises the question
of long-horizon behavior. Even when local objectives (e.g.,
next-action prediction accuracy) are satisfied, small model-
ing errors may compound over time, leading to distributional
drift or unrealistic equilibria.

This framing enables several important distinctions:

1. Local fidelity vs. global stability: a simulator may
match empirical action distributions at short horizons
while diverging over longer rollouts.

2. Training vs. deployment mismatch: objectives opti-
mized under short trajectories may not control long-
term population behavior.

3. Evaluation beyond snapshots: stability metrics depend
on trajectories, not single-step predictions.

While most existing silicon societies do not explicitly opti-
mize, let alone evaluate stability, making stability assump-
tions explicit clarifies what claims can—and cannot—be
supported by current evaluation practices. While model
complexity precludes the kind of mathematical control in
dynamical systems research, the concepts of ergodic theory
do provide a language to describe and classify long-term
behaviour.

4.4. An Example Simulator

To illustrate what frictionless reproducible silicon society
projects look like, we provide ScenSim!, an example sim-
ulator project structured for training against evaluation ob-
jectives, with highly interoperable components. The simula-
tor’s configuration has 5 main components:

* simulator (engine logging and execution)

* model (genAl models, model parameters, O)
 environment ,7 , Oy, (interaction rules)

* scenario (agent models A;, Z;, shared knowledge)
* evaluation £ (metrics, probes, statistical operations)

Each component is configurable via schema-constrained
plain text, with variants easily created through default over-
rides. The simulator outputs human- and LLM-readable
action logs for evaluation. A probe system surveys agents
longitudinally, feeding responses to evaluation function LL
L. We include two example scenarios (election and market-
place) with instructions for generating new ones..

The project follows open science practices: version-
controlled with strict formatting and testing requirements,
readable contribution guidelines, and emerging best prac-
tices for coding agents (e.g., context files for agent
use). Project management is largely automated, letting re-
searchers focus on model development and evaluation rather
than tooling.

"https://anonymous.4open.science/r/scensim-0558

5. Alternative Views

Our position is constructive: we not only identify the
dilemma but propose a timely solution. Alternative views to
our position can take a few forms:

Arguments against benchmarking. A common objec-
tion is that benchmarks are inherently gameable. This con-
cern is valid, but incentive structures are improving rapidly.
For example, PeerBench (Cheng et al., 2025) combines
sealed execution, item banking with rolling renewal, and
delayed transparency, and operates alongside open bench-
marks to reduce strategic overfitting.

A deeper critique is that ML benchmarks are ill-suited to
large, complex social systems, where ground truth is often
ambiguous or unavailable. It is unclear, for instance, how to
objectively rank a simulated response to a policy interven-
tion or global event. From this perspective, benchmarking
risks imposing a false precision that misrepresents the epis-
temic status of social science. We agree that naive ranking
is inappropriate. However, evaluation need not reduce to
scalar scores. Instead, it can characterize model behavior,
surface sensitivities, and clarify which assumptions drive
outcomes. Social science already operates productively
without definitive ground truth, relying on comparative anal-
ysis and typologies; the framework we propose explicitly
draws on these traditions.

The real problem is deployment, not methodology. An-
other view holds that the primary risk is not the absence
of benchmarks, but the uncritical deployment of these sim-
ulators by decision-makers. The remedy, on this account,
is governance and stakeholder education rather than addi-
tional ML infrastructure. We agree that standards alone
cannot prevent misuse. However, shared evaluation norms
are themselves communicative: they make limitations legi-
ble, create common reference points for critique, and signal
appropriate use to downstream stakeholders.

Ethical and technical challenges of obtaining ground
truth. A key motivation for Silicon Societies is the ability
to study scenarios that would be costly, impractical, or uneth-
ical to examine with human subjects. In such cases, relevant
datasets may be sparse, sensitive, or altogether unavailable,
making validation against real-world ground truth infeasible.
We acknowledge this limitation, but caution that deploying
unvalidated models in high-stakes domains is itself problem-
atic. When grounding is impossible, this should be stated
explicitly and the strength of resulting claims attenuated ac-
cordingly. Where feasible, ethical data frameworks should
be developed and preferred (Biick-Kaeffer et al., 2025).

Validation is premature and may stifle development. A
related argument is that the field is too young to know which
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assumptions matter, and that early validation risks locking
in the wrong abstractions. We agree that exploratory work
is essential. Nonetheless, some degree of evaluation is nec-
essary even at early stages to ensure progress is cumulative
rather than idiosyncratic. Provisional and lightweight eval-
uation frameworks can evolve alongside the field without
foreclosing future methodological shifts.

Are social simulations a good use case for LLMs? Given
the cost and complexity of LLMs, it is important to clar-
ify when LLM-based social simulations are well motivated.
Traditional agent-based models capture diffusion processes
such as social contagion and epidemics (Guilbeault et al.,
2017; Sambaturu et al., 2020), but struggle with phenom-
ena rich in social meaning. Deep reinforcement learning
agents exhibit general coordination capabilities (Stooke
et al., 2021), yet remain far from human social complexity.
One-shot or few-turn LLM persona studies probe implicit
social knowledge (Li et al., 2025a), and are informative
when interaction and dynamics are not central.

We argue that LLM-based social simulations are a truly
novel and useful approach to modelling, and are especially
valuable for phenomena characterized by:

* Collective network effects emerging from many inter-
acting agents;

* Social norms and sanctioning shaping behavior (e.g.,
family planning, public health compliance, political
participation);

* A central role for language, including semantic abstrac-
tion and linguistic ambiguity.

6. Call to Action

Realizing this vision requires coordinated action. ML re-
searchers should adopt validation frameworks, report sensi-
tivity and variance metrics, and build on community stan-
dards rather than ad hoc procedures. Social scientists can
identify suitable benchmark datasets, advise on domain-
appropriate evaluation criteria, and challenge oversimpli-
fied claims about simulation capabilities. Venues (NeurIPS,
ICML, AAMAS) should require validation protocols for ac-
ceptance and create tracks for methodological work. Fund-
ing agencies can include validation requirements in pro-
posals and prioritize interdisciplinary teams and method-
ological rigor. Industry labs should adopt validation bench-
marks internally, contribute to open infrastructure, and be
transparent about model limitations for social simulation.
To catalyze this transition, we propose forming an inter-
disciplinary working group to deliver three foundational
resources:

1. A benchmark suite spanning survey response predic-
tion, economic games, opinion dynamics, and crisis

behavior, with held-out test sets and contamination con-
trols;

2. An open-source evaluation toolkit implementing stan-
dardized metrics for distributional validity, variance
calibration, and sensitivity analysis; and

3. An author checklist and reviewer guidelines for LLM
social simulation papers.

These resources would provide the shared infrastructure
necessary to transform a fragmented literature into a cumu-
lative research program capable of answering the fundamen-
tal question: when, if ever, can LLM social simulations be
trusted?

7. Responsible Research

This research program centers around advancing LLM simu-
lations. Like all powerful technologies, LLMs have dual-use
nature. Here, an accurate social simulator could be misused
to design manipulation campaigns, persuasive advertising,
engineered misinformation, or content exploiting social me-
dia algorithms. Early work on design iteration using these
technologies suggests such applications may be credible (Li
et al., 2025b; Duetting et al., 2025). Simulations might also
train manipulator agents or generate fake engagement.

These concerns align with existing literature on LLM social
risks. Researchers have already used LLM simulations to
study Al-coordinated influence campaigns (Orlando et al.,
2025), build influential social media bots (Jin & Guo, 2025),
and model adversarial bot dynamics (Le et al., 2022). Evi-
dence shows LL.Ms are highly persuasive, even regarding
elections (Lin et al., 2025) or conspiracy theories (Costello
et al., 2026), while LLM-generated disinformation—a doc-
umented threat to democracies (McKay & Tenove, 2020;
Badawy et al., 2018; Givi et al., 2024)—was already diffi-
cult to detect in 2023 (Chen & Shu, 2024). These concrete
risks add to the Al safety risks of multi-agent Al systems
(Hammond et al., 2025).

‘We share these concerns. However, malicious actors can
freely test tactics on real people, while safety researchers
face ethical constraints. These simulators would provide
safe testing environments for developing defenses without
harming anyone. Pursued responsibly, this tool could level
the playing field, though risks should be systematically mea-
sured and limited.
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A. Full Trajectory Factorization

For completeness, we provide the explicit factorization of the trajectory distribution induced by the simulator described in
Section 2.2.

Let X denote the set of prompt constructors and orchestration logic, and let initial states be drawn from p(sg, 23, . .. 2%).
The joint distribution over a trajectory 7 of length 7" factorizes as:

T-1

| X.0) = plsus b 2§) ] | psien | Tls1.00).0m)
=0 environment
n
11000} [ 50) Pzt | 220141, 20),67) - plaiiy | A'240),07)
»:1A/—’
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This factorization makes explicit the conditional dependencies between environment dynamics, agent observations, internal
state updates, and action generation. While not required for the conceptual arguments in the main text, it enables precise
reasoning about independence assumptions, intervention effects, and evaluation metrics.

B. Simulation Visualization

AGENT LAYER
Initialization Simulation
Model Memory EVALUATIONS
Initial Context Forming Actions
Agent-Level
Real-Sim Calibration
ENVIRONMENT LAYER Behavior Evaluation
Environment Processing Agent Processing Sim-Level
Initialization - Non-Agent Variables Creating Observations Agent Interactions
Multi-Agent Dynamics Action Resolution Global / Social Effects

Figure 1. A visualization of the components involved in the simulation task. Arrows depict flow of information/computation.
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